Tetrahedron Letters No. 17, pp. 735-739, 1962. Pergamon Press Ltd. Printed in Great Britain.

THE STEREOCHEMISTRY OF DESOSAMINE, AN NMR ANALYSIS Peter W.K. Woo, Henry W. Dion, Lois Durham and Harry S. Mosher Research Division, Parke, Davis & Company, Detroit, Michigan

and

Department of Chemistry, Stanford University, Stanford, California (Received 11 June 1962)

DESOSAMINE, a 3,4,6-trideoxy-3-dimethylaminohexose¹ obtained from a number of antibiotics (erythromycins A, B and C, methymycin, neomethymycin, narbomycin, oleandomycin and picromycin), was recently shown to belong to the <u>D</u> family,² but its complete configuration has not been reported. An NMR study has now provided data (<u>cf</u>. Table 1) which indicate that in desosamine (m.p. 86-87°), desosamine hydrochloride (m.p. 188-190°) and diacetyldesosamine hydrochloride (m.p. 197-198°) the hydrogens at C-1, C-2, C-3 and C-5 are all axial. Thus, based on the established configuration at C-5, desosamine may be sterically represented as I and II.

¹ R.K. Clark, Jr., <u>Antibiotics & Chemotherapy</u> <u>3</u>, 663 (1953); H. Brockmann, H.B. König and R. Oster, <u>Chem. Ber.</u> <u>87</u>, 856 (1954).

² C.H. Bolton, A.B. Foster, M. Stacey and J.M. Webber, <u>J. Chem. Soc.</u> 4831 (1961).

TABLE 1

Coupling Constants of Desosamine and Derivatives^a

	Desosamine (cps)	Diacetyldesosamine hydrochloride (cps)	Desosamine hydrochloride (cps)
J _{la,2a}	7.8	7.6	-
J _{2a,3a}	10.2	10.4	-
J _{3a,4e}	3.9 (4.2) ^b	4.2 (4.5) ^{<u>b</u>}	(4.2) or (2.3)
J _{3a,4a}	12.0 (11.7) ^{<u>b</u>}	12.5 (12.2) ^{<u>b</u>}	(12.0) or (10.5)
J _{4a,4e}	13.1	12.7	13.0
J 4a,5a	11.1 (10.7) ^{<u>b</u>}	11.1 (10.7) ^b	(10.5) or (12.0)
J _{4e} ,5a	1.8 (2.2) ^b	1.9 (2.3) ^b	(2.3) or (4.2)
J _{5a,6}	6.3	6.1	6.2
J _{le,2a}	4.0 ^C	none	3.0 ^C
J _{2a,3a}	10.9 ⁰	none	-

^a All spectra were determined with a Varian A-60 instrument using deuterium oxide as solvent.

<u>b</u> Measured values, from which J values were estimated as described in ref. 6.

 $\frac{c}{c}$ Values for the minor anomer.

The NMR spectrum of desosamine (<u>cf</u>. Fig. 1) immediately after solution in deuterium oxide shows that the C-1 hydrogen doublet centered at 4.97 p.p.m. is coupled to the hydrogen at C-2 with $J_{1,2} = 7.8$ cps, a magnitude indicative of a diaxial orientation of these two hydrogens.^{3,4} Diacetyl-

³ From NMR studies of acetylated pyranose, cyclohexane and related ring systems, R.U. Lemieux, R.K. Kulling, H.J. Bernstein and W.G. Schneider [J. Amer. Chem. Soc. 80, 6098 (1958)] reported these data: (a) for hydrogens on adjacent carbons, $J_{a,a} = 5-8 \text{ cps}$, $J_{a,e}$ or $J_{e,e} = 2-3.5 \text{ cps}$ (cf. ref. 4); (b) in β -D-xylopyranose tetraacetate, $J_{5a,5e} = 12 \text{ cps}$, $\delta_{5e} > \delta_{5a}$ (cf. ref. 5); (c) for a number of acetylated pyranoses, $\delta_{1e} = 5.66-6.11 \text{ p.p.m.}$, $\delta_{1a} = 5.37-5.75 \text{ p.p.m.}$ (cf. Ref. 5).

⁴ J.I. Musher [<u>J. Chem. Phys.</u> <u>34</u>, 594 (1961)] shows that $J_{a,a} = 12.35$ cps $J_{a,e} = 4.25$ cps in 1,1,4,4-tetramethylcyclohexyl-<u>cis</u>-2,6-diacetate.

No.17

desosamine hydrochloride, not complicated by anomerization, shows this same diaxial orientation at C-1 and C-2; its spectrum shows the C-1 hydrogen doublet down field centered at 6.20 p.p.m. and the C-2 hydrogen quartet down field centered at 5.65 p.p.m., both exhibiting axial-axial splitting of 7.6 cps.^{3,4} The two groups of doublets in the desosamine spectrum centered at 3.75 p.p.m. are assigned to the C-2 hydrogen, and the splitting pattern shows $J_{2a,3} = 10.2$ cps, a magnitude which indicates that the C-3 hydrogen is axial.^{3,4} The axial C-3 hydrogen signals at 3.14 p.p.m. confirm this value of $J_{2a,3a}$ and further give indication that $J_{3a,4e}$ is 3.9 and $J_{3a,4e}$,^{12.0} cps, approximately.

The two groups of quartets for the equatorial hydrogen at C-4 at 2.14 to 2.47 p.p.m. show coupling with the axial C-4 hydrogen at higher field with $J_{4a,4e} = 13.1 \text{ cps},^{3,5}$ and with the neighboring hydrogens at C-3 and C-5 with J values of approximately 3.9 and 1.8 cps,⁶ respectively. The splitting pattern of the axial C-4 hydrogen (partly hidden by the C-methyl doublet centered at 1.66 p.p.m.), having a total width of 35.5 cps, indicates that it is coupled to the two hydrogens at C-3 and C-5 with J values of approximately 12.0 and 11.1 cps.⁶ These large values confirm the axial nature of the C-5 hydrogen.^{3,4} The axial C-4 hydrogen signals in diacetyldesosamine hydrochloride are all visible and fit the theoretical

⁵ J.N. Shoolery and M.T. Rogers [J. Amer. Chem. Soc. <u>80</u>, 5121 (1958)] give other examples showing that the equatorial proton absorbs at a larger δ value than its axial counterpart.

⁶ The hydrogens are treated as an ABX system [J.A. Pople, W.G. Schneider and H.J. Bernstein, <u>High Resolution Nuclear Magnetic Resonance</u> p. 132. McGraw-Hill, New York (1959)] with each line further coupled to Y which is noninteracting with X. The H_{4a} splitting in Fig. 1 was obtained by first treating H_{4a}, H_{4e} and H_{3a} as an ABX system, then, as an approximation, splitting each line symmetrically with respect to chemical shift and intensity by H_{5a} as Y. With this approximation the J values were estimated from the observed splittings given in parentheses in Table 1. Similarly by treating H_{5a} as X and H_{3a} as Y an estimate of J_{4a}, 5a was obtained.

splitting pattern estimated from the appropriate J values in Table 1.

Anomerization of desosamine in deuterium oxide gave after five minutes significant amounts of the minor anomer in which the equatorial C-1 hydrogen doublet appeared down field at 5.62 p.p.m., $J_{1e,2a} = 4.0 \text{ cps}$, 3,5 and the C-2 hydrogen quartet, down field centered at 4.12 p.p.m., $J_{2a,3a} = 10.9 \text{ cps}$. These data show that desosamine (m.p. 86-87°) exists primarily as the anomer with relative configuration II.

Similar consideration leads to the conclusion that desosamine hydrochloride (m.p. 197-198°) also possesses the all-<u>trans</u> configuration (<u>cf</u>. Table 1⁷). Its spectra in deuterium oxide show the occurrence of anomerization and exhibit the typical signal patterns which indicate that the C-3 and C-5 hydrogens are axial.

It is of biogenetic interest that desosamine and the methyl glycoside of chalcose, 8 a 3,4,6-trideoxy-3-methoxyhexose found in the antibiotic chalcomycin, are identical in configuration.

⁷ In the desosamine hydrochloride spectra the C-3 hydrogen signals, due to a down field shift similar to that shown also by the N-methyl singlet (0.68 p.p.m. from that in Fig. 1), overlap the C-2 hydrogen signals and thus produce a highly complex pattern [Pople <u>et al.</u>, <u>loc. cit.</u> (ref. 6), pp. 96-98] from which it is difficult to obtain the values of J_{3a,4a} and J_{3a,4e} and thus to distinguish them from J_{4a,5a} and J_{4e,5a}.

⁸ P.W.K. Woo, H.W. Dion and L.F. Johnson, <u>J. Amer. Chem. Soc.</u> <u>84</u>, 1066 (1962).